
Bluebot Pattern Design and Detection

Jack Defay

May 2023

1 Abstract

The Blueswarm system is a group of underwater, fish inspired robots that com-
municate implicitly by estimating pose using vision [3]. Each bluebot has 2
HD cameras, and a Raspberry Pi Zero to handle all of the image processing,
planning and control. These robots currently operate only in the dark, using 3
onboard LEDs to signal their position and heading to other robots. In order to
bring this system closer to deployment in real marine settings, it is crucial to
develop a system that works in dynamic daylight environments.

This paper makes several contributions towards this goal, including datasets,
evaluation code, and 2 pattern and algorithm designs for daylight detection of
other bluebots. The two designs presented in this paper are a red fish with a
custom blob detection algorithm, and a checkerboard fish, with a Haar feature
based ensemble detector.

2 Introduction

The Blueswarm system is a relatively new robotic platform for underwater
swarm behavior [3] [2] [1] [4]. This paper contributes to the Blueswarm sys-
tem by proposing a novel design of patterns and algorithms to aid in daylight
detection of bluebots. This paper builds off of two classical computer vision
detectors, the blob detector and the Viola-Jones Haar feature detector [6].

The key challenge of this work was creating a favorable signal to noise ratio
between the fish and the background. Although this problem would be relatively
easy on a blank white background, even the controlled underwater environments
that we are currently conducting experiments in pose some challenges. The
lighting comes only from the top of the tank, casting shadows, there are a few
features on the bottom and sides of the pool that might distract, the water
distorts and attenuates the light, there are 2 windows that shine very brightly
compared to the rest of the background, and the water surface often provides a
near mirror image of the view. These challenges necessitate a more sophisticated
fish detector. Ultimately, we hope to use these fish in natural environments,
which are even less controlled. To do this, we draw inspiration from real fish

1



scale patterns, which are hypothesized to help fish recognize each other, and
estimate pose to facilitate schooling [5].

3 Data Collection

Figure 1: Photo from original underwater dataset with thresholding applied and
shown in blue

I took 4 datasets during this project as I iterated on the design. First, I
took a set of images during a different bluebots experiment in our large tank
(12 images). One of these images with thresholding applied is shown in figure 1.
Next I took a dataset of a black fish in air at different distances and backgrounds
to test different OpenCV detectors (5 images). Once I decided on the pattern
designs that I wanted to try, I took a third dataset in air behind the Engineering
Quad, where I recorded videos in front of trees, bricks, and a gray wall (46 im-
ages). These varied backgrounds allowed me to develope specialized algorithms
for each pattern and to stress test it against different backgrounds. Finally I
took an underwater dataset using the patterned fish for final tuning and eval-
uation, and manually labeled the fish centroids (114 images). Each image was
downsampled twice with the OpenCV function pyrDown and then cropped to
192x256px, the image size currently used in the bluebot’s vision stage [3].

2



4 Design and Implementation

Figure 2: Top left to right: the original image of a red fish, the red blob detector,
and a stock OpenCV blob detector on the red channel. Bottom left to right: the
original image of a checkerboard fish, the Haar feature checkerboard detector,
the fast checkerboard detector, and the inverse-corrected checkerboard detector.
Red dots are matches.

The core piece of this project was a hardware-software co-design to create
robot fish that can see each other. I designed and painted fish shell patterns to
be easily detectable, and then wrote algorithms to detect them.

4.1 Red Fish

Figure 3: Left: cropped photo from underwater dataset. Right: That same
photo with red filtering applied

The design of the first fish pattern is simply a red fish. Although the color
red is highly attenuated by the water, it is also quite uncommon in underwater
settings. In our two tanks there is no shade of red, and in the majority of

3



Figure 4: Left: cropped photo from underwater dataset. Right: That same
photo with red filtering applied. This photo is significantly more challenging
than the previous, but the filter still isolates the fish.

underwater settings there is limited to no red. Although this approach will
have its limitations, it can also serve as a baseline with which to build more
tailored detection algorithms on top of.

The red fish detection alogorithm builds off of previous work on the bluebots
using an optimized version of pixel continuity to detect blobs and calculate
centroids from a filtered and thresholded image [3] [2] [1] [4]. In previous work
the pixel continuity algorithm was applied to the LED images, but in more
recent (possibly unpublished) work, the author applied this same algorithm to
a school of black painted fish on a white background. In this work I take a
similar approach by painting the fish red, on a more complex background. The
main contribution to this algorithm however, is in preprocessing the image. In
order to get the filtered image in figure 3 and figure 4, I apply the following
equation:

img filtered = img[:, :, 0]− (img[:, :, 1] + img[:, :, 2])

Which subtracts the green and blue color channels from the red color chan-
nel. This is important because although the red fish shows up brightly in the
red color channel, so does the color white. Even in these relatively controlled
images, there is white from the windows, from the panels on the bottom of the
pool, and from the strings and pool net I used to suspend the fish shell. This
subtraction highlights the differential between red coloring and overall bright-
ness in the image. I then clip any value less than zero to zero, and scale the
image to [0,1] where the maximum brightness pixel has value 1. This step is
also important because it lets the threshold parameter (currently set to 0.9) to
be an absolute threshold, which lets us separate even the tiny, dull fish in figure
4 from the background due to its red color.

4



4.2 Checkerboard Fish

The design of the second pattern was inspired by the Viola-Jones detector and
Haar features [6]. The premise is that checkerboard patterns would be uncom-
mon in nature, kind of like a QR code. Hopefully this pattern could provide
enough signal-to-noise ratio without relying on color, because color is always
in danger of failure because there happens to be something else of that color
in the environment. Although a HOG or SIFT detector is an obvious choice
for this type of pattern, these detectors require calculating the features over
the entire image, which is costly. In order to run this detector in real time, it
should leverage a method designed for real time operation like the Haar feature.
This detector uses an ensemble of 3x3 black and white checkerboard features
at different scales (1px squares, 3px squares, etc.). By reducing the feature
matching task to a binary mask, it can be very efficiently calculated with log-
ical and calculations over a thresholded image. And by ensembling different
scale checkerboards, the detector can find fish at different distances away. Af-
ter developing the original detector, I came up with two modifications: a fast
checkerboard detector, and an inverse-corrected checkerboard detector.

4.2.1 Fast Checkerboard Detector

The fast checkerboard detector came from the observation that the checkerboard
detector was still running significantly slower than the red blob detector. Since
it was running in a nested for loop to mask the window of the image. It seemed
like the best way to speed it up was to cut out one for the for loops, so I
reduced the checkerboard detector to more of a barcode detector. Although
this looses one dimension of the uniqueness of the pattern, it seemed reasonable
that barcodes are also uncommon in nature so they should be detectable. I was
also able to use the same fish images, because every 2D checkerboard embeds
several 1D barcodes.

4.2.2 Inverse-Corrected Checkerboard Detector

The second modification of the original detector was a result of the poor signal
to noise ratio. Although the pattern was often detectable, there were also a lot
of false positives and it was difficult to separate the fish from the background.
This algorithm uses the same Haar feature for matching, but also takes the
inverse Haar feature (checkerboard starting with a black square in the top left
corner instead of a white square). The key issue that this solves is similar to the
green and blue channel subtraction in the red blob detector. An entirely white
area will fool the detector because it has a 55.5% white area, so by requiring
that a window both matches with the positive mask and does not match with
the negative mask, the detector can better discriminate between checkerboards
and the background.

5



4.3 Red Blob Baseline

Finally, I wrote a detector using the simple blob detector from OpenCV on the
red channel of the image as a baseline to compare our custom blob detector to.

4.4 Tuning

Figure 5: Top left to right: the original image of a red fish, the red blob detector,
and a stock OpenCV blob detector on the red channel. Bottom left to right: the
original image of a checkerboard fish, the Haar feature checkerboard detector,
the fast checkerboard detector, and the inverse-corrected checkerboard detector.
Red dots are matches. This figure presents a more challenging example.

Tuning the detectors was a challenging, but very important step. Although it
was fairly straightforward to get the detectors to work on the images in figure 2,
there was a set of images more like those in figure 5 that were much more difficult
to get. The other key challenge of tuning was to detect the fish without a high
false positive rate. The first important step came from the larger modifications
to the algorithms as stated above. The green-blue channel subtraction from the
red image, the fast and inverse-corrected checker detectors all came from this.
In order to reduce the false positive rate of the red blob detector I also included
a catch at the end similar to the LED-blob detector in [3]. If there are multiple
distinct blobs detected, simply take the lowest one as the truth. This only works
if the detector is well tuned to only detect the fish, but is sometimes fooled by
the mirror image presented from the surface reflection. The next challenge was
more in the line of parameter tuning. Although there are few parameters in
these detectors, they are very important to performance. The red blob detector
had two parameters for thresholds, both of which ended up being set to 0.9 out
of 1. The baseline blob detector threshold that worked the best was 0.7 out
of 1. For the checkerboard detectors, I found that the smaller detectors were
more sensitive than the larger detectors, and thus required higher thresholds to
effectively discriminate between fish and background. I tried many ways to do

6



this, but found that a simple linear dependence on the side length of the detector
worked best. My hope is that these algorithms will be sufficiently general for
the parameter set to generalize to other situations, but further experiments will
tell. Although I was able to get a good tune on the red blob detector, I believe
more work is required to properly tune the checkerboard detectors.

5 Results

Figure 6: Evaluation of the 5 detection algorithms on a dataset of 50 underwater
images taken by bluebots. Left to right the methods are: red blob, red baseline,
checkerboard, checkerboard fast, and checkerboard inverse-corrected.

The methods are evaluated on 3 metrics: accuracy, false-positive rate, and
runtime. We want the highest accuracy, with the lowest false positive rate, with
few pathological failures besides those induced by distance. We also require
a very low runtime in order to run realtime on the computationally limited
Raspberry-Pi zero. For reference, the current vision algorithm employs a very
similar algorithm to the red blob approach, and that is barely fast enough to
give the fish a fast enough control loop. Note the log scale on the y-axis of the
runtime plot. Also note that these evaluations were done on the same dataset
as the tuning, so this is a validation set not a test set.

5.1 Accuracy

The accuracy of these methods depends a lot on the specific tune, and this test
unfortunately only covers a limited amount of generalizability of the algorithms.
Although there is pretty significant visual variation in these datasets, this is only
in one specific pool at one specific time. The red blob detector performs quite
well, with an accuracy of 86% (fig. 6). When looking at the failure cases,
there doesn’t seem to be anything special about them, so I will investigate and

7



Figure 7: Runtimes of the 5 detection algorithms on a dataset of 50 underwater
images taken by bluebots. Left to right the methods are: red blob, red baseline,
checkerboard, checkerboard fast, and checkerboard inverse-corrected. Note the
log scale on the y-axis.

hopefully we can get this number even higher. The blob baseline performs much
worse, and when inspecting the failure cases it seems that it is able to get the
cases where the fish is close, but when the fish is far or turned to face the camera,
it is difficult to distinguish it from the background. It also gets easily thrown
off by the windows, reflections, and other distractors. The checker detect and
inverse corrected perform very similarly, the main culprit was whenever the fish
was not at exactly eye level, only two rows of the checkerboard could be seen,
making it much harder to match the template. The fast checkerboard detector
was able to identify most of the fish, but with a very high false positive rate.
This detector actually allowed it to get around the previous problem, but I
believe it needed to be tuned to be a bit less sensitive. Looking at failure cases
showed that it almost always matched with many features in the environment.

5.2 Runtime

This plot shows the average and std. runtime of the different algorithms over
the underwater dataset. The red blob algorithm peforms very well, with an
average runtime of only 0.9 seconds compared to the baseline blob detector at
2.9s. The checkerboard and inverse-corrected checkerboard took significantly
longer to run at 1162s and 1460s, respectively, while the fast checkerboard was
much improved at only 18s. The red blob detector has only a single nested loop
on the number of pixel matches, the checkerboard detectors have a nested for
loop over the entire image repeated for currently 4 different sized masks, and
the fast checkerboard detector has a single loop over the width of the image,
repeated for 4 masks. In their current form, only the red blob algorithm could
be run in real time onboard the fish, but I hope that with further development,

8



the Haar feature approach could be used as well. Each of these algorithms
run significantly faster than alternatives that use HOG or SIFT features from
earlier, qualitative analysis.

6 Conclusion

The performance both in accuracy and runtime of the red blob detector is very
promising, and I hope to implement this strategy on the bluebots for future
experiments. The Haar feature checkerboard detectors show promise, but are
not yet able to effectively detect the fish, and are too slow to run onboard.
The datasets collected will inform new pattern and algorithm designs, and the
codebase is sufficiently general to plug in new algorithms to evaluate. This
project makes somewhat simple, yet significant contributions to the Blueswarm
project, and hopefully will be incorporated into the next iteration of the robots.

Next steps for this project include exploring new types of detectors, collecting
a more comprehensive dataset across different underwater environments, and
evaluating the red blob detector onboard a bluebot. I also plan to incorporate
benefits of both approaches into a red-barcode fish, with either red and black or
maybe red and blue stripes. I suspect that the more distinct red coloring will
improve the signal to noise ratio, while the barcode design will protect against
random red objects in the environment. Perhaps an orange and black striped
fish would work well too, a Princeton tiger-fish.

7 Contributions

This project was almost entirely original work. I borrowed a few code snip-
pets from the Blueswarm project. Namely the ”thresholding” and ”continuity”
functions from the vision pipeline. To collect most of the data, I performed
experiments in our large pool with help from Dr. Di Ni using the Blueswarm
system.

References

[1] Florian Berlinger, Julia T. Ebert, and Radhika Nagpal. “Impressionist Al-
gorithms for Autonomous Multi-Robot Systems: Flocking as a Case Study”.
In: 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). ISSN: 2153-0866. Oct. 2022, pp. 11562–11569.
doi: 10.1109/IROS47612.2022.9981448.

9



[2] Florian Berlinger, Melvin Gauci, and Radhika Nagpal. “Implicit coordina-
tion for 3D underwater collective behaviors in a fish-inspired robot swarm”.
In: Science Robotics 6.50 (Jan. 13, 2021). Publisher: American Association
for the Advancement of Science, eabd8668. doi: 10.1126/scirobotics.
abd8668. url: https://www.science.org/doi/full/10.1126/scirobotics.
abd8668 (visited on 05/02/2023).

[3] Florian Berlinger and this link will open in a new window Link to external
site. “Blueswarm: 3D Self-Organization in a Fish-Inspired Robot Swarm”.
ISBN: 9798534680669. PhD thesis. United States – Massachusetts: Harvard
University, 2021. 178 pp. url: https://www.proquest.com/docview/
2564171061/abstract/5B15CD83A10A4A97PQ/1 (visited on 05/02/2023).

[4] Florian Berlinger, Paula Wulkop, and Radhika Nagpal. “Self-Organized
Evasive Fountain Maneuvers with a Bioinspired Underwater Robot Collec-
tive”. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA). ISSN: 2577-087X. May 2021, pp. 9204–9211. doi: 10.1109/
ICRA48506.2021.9561407.

[5] Tony J. Pitcher, ed. The Behaviour of Teleost Fishes. Boston, MA: Springer
US, 1986. isbn: 978-1-4684-8263-8 978-1-4684-8261-4. doi: 10.1007/978-
1-4684-8261-4. url: https://link.springer.com/10.1007/978-1-
4684-8261-4 (visited on 05/09/2023).

[6] Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in
Computer Science. Cham: Springer International Publishing, 2022. isbn:
978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9.
url: https://link.springer.com/10.1007/978- 3- 030- 34372- 9
(visited on 05/02/2023).

10


