
A Modular Framework for End-Host Driven Network Measurements
COS561 Spring ’23 Course Project Report

Tanu Batra (tanu.batra@rutgers.edu)a, Jack Defay (jd6058@princeton.edu)b, Varun Rao
(varunrao@princeton.edu)b, and Leon Schuermann (lschuermann@princeton.edu)b

aRutgers University
bPrinceton University

Abstract

Today’s networks get more complex by the minute: increases
in bandwidth requirements, low-latency links, ubiquitous In-
ternet of Things deployments, and strengthened security re-
quirements demand extremely reliable, scalable and intelli-
gent networks. Unfortunately, many of these requirements
are interconnected. For instance, new features are usually
deployed using middleboxes, but those increase network com-
plexity and makes it harder to diagnose issues. Additional
hardware-assisted monitoring infrastructure on routers lowers
the resources available to packet processing. Making matters
worse is the fact that network operators such as Internet Ser-
vice Providers have only limited insights into the resulting
network behavior; they commonly rely on informal customer
feedback.

In an effort to combat these issues, this report presents our
work on developing a modular framework for end-host driven
network measurements. In particular, we present our design
for an expressive Domain Specific Language (DSL) to imple-
ment custom network measurements, alongside mechanisms
to aggregate captured information in a graph-based data struc-
ture. Furthermore, we demonstrate our implementation of
these concepts in an integrated hardware–software system.
We demonstrate the applicability of our framework through a
deployment on the Princeton University campus network.

1 Introduction

Today’s Internet Service Providers (ISPs) face a challenge
of improving their networks to handle an ever-increasing de-
mand for performant and flexible Internet connectivity. At
the same time, they also strive to provide a reliable service
to their customers. In particular, to ensure reliability of their
networks, ISPs often rely on informal customer feedback or
complaints to diagnose network issues, which may involve di-
rect interaction with customers or physically probing affected
network hardware. Conventional networking hardware such
as commodity routers and switches provides only limited in-

Figure 1: System Overview - 4 Ethernet Raspberry Pi, 1 Wifi
Raspberry Pi, 1 External Probe

sight into network behavior. This makes it difficult to identify
issues related to routing, packet reordering, packet filtering,
or middlebox behavior.

RIPE Atlas [10] is a global Internet-scale measurement
network comprised of active network probe devices. It helps
to increase network visibility and simplifies troubleshooting
of common pathological network behaviors. While effective
for diagnosing issues concerning routing, latency and censor-
ship on a global scale, such a solution lacks the granularity
and expressiveness required to cover integrated ISP-networks
themselves. Furthermore, conventional and readily available
diagnostic information such as raw link statistics and routing
table dumps do not give significant insights into the actual
network behavior.

To address these issues, we aim to build a measurement
platform based on active network probes, integrated into a
network as end-hosts. A centralized controller is used to coor-
dinate measurements by instructing probe behavior, and col-
lecting and analyzing results. We validate our system with a
Mininet-based network simulation environment, and through
a small-scale deployment on the Princeton University campus

1

data network.
Our work contributes to the space of network measurement

solutions by providing a flexible and fine-grained measure-
ment platform to network administrators, illustrated in Fig-
ure 1. This platform enables the user to define custom and
arbitrarily complex measurements through a simple Python-
based Domain-Specific Language (DSL). We hope that this
platform will enable ISPs to improve and adapt their networks
to cope with increasing demand while maintaining reliability.

2 Related Work

In this section, we contextualize our framework within the
body of related work. In particular, we describe existing sys-
tems in the area of active network probing, as well as network
monitoring.

2.1 Dedicated Hardware-based Network Mea-
surement Systems

Prior work has used probes to perform both small and large
scale network monitoring and measurements. One example is
CheesePi, which uses a Raspberry Pi-based distributed mea-
surement system for monitoring home internet connections
(e.g. bandwidth and loss rate) [8]. Another such framework,
the Archipelago Measurement Infrastructure, performs net-
work monitoring using 120 Raspberry Pi probes deployed
on major US broadband access provider networks. They esti-
mated the topology and dynamics of the network by measur-
ing the connectivity and congestion across network peerings
through active measurements [2].

RIPE Atlas [10] is a large scale network measurement
platform which is directly and most related to our work. It
performs active measurements using global network of 12800
probe devices deployed through volunteers. Although it pro-
vides an “unprecedented understanding of the state of the
Internet in real time”, there are several limitations associated
with its use. First, it is difficult to correlate results between
probes. Second, one cannot send arbitrary packet data. Third,
one cannot easily define new measurement types. Fourth,
and most importantly, it is hard to explicitly coordinate mea-
surements, such as by sending packets between two probes
directly. In contrast, our system is strictly more expressive
and thus enables a strict superset of measurements to be im-
plemented. Other comparable large scale platforms include
SamKnows, BISmark and Dasu [1].

1https://stat.ripe.net/m/widget/atlas-ping-measurements#
w.mode=condensed&w.measurement_id=2006&w.probe_id=
1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=
2023-05-07T00%3A00%3A00&w.resolution=1h

Figure 2: RIPE-Atlas can capture various types of network
misbehavior: in this example, an active probe device on a
commodity Internet uplink is unable to reach the IPv6-address
of m.root-servers.net (2001:dc3::35) due to a routing
error within the ISP’s network (highlighted in red), while
other hosts remained reachable over the same time span1.

2.2 Software-based Network Measurement
Systems

In contrast to the previously mentioned dedicated network
monitoring systems, projects such as Microsoft PingMesh [5],
Google Black Box Monitoring [4] and NetSight [6] integrate
active probing software into existing systems, to acquire met-
rics such as latency and packet loss.

2.3 Network Monitoring Applications

Network measurements can be used in a variety of ways;
identification of censorship devices and middleboxes are two
such applications.

Prior work [9] has identified censorship devices through
a novel traceroute method. On a much larger scale, [7] have
identified censorship activities that block DNS, HTTP, or
HTTPS requests within 122 countries through end-to-end
network measurement frameworks.

Detal et al. [3] extended a basic traceroute measurement
to detect middlebox interference. Specifically, they proposed
Tracebox as a tool that detects modifications by middleboxes
in network paths by sending IP packets with varying TTL val-
ues and analyzing the returned ICMP messages. Furthermore,
it can pinpoint the specific network hop where the interference
occurs using information provided in the ICMP message. So
far our work has focused on basic network measurements such
as ping and traceroute, and some more complicated measure-
ments like NAT middlebox detection. However, our frame-
work is extensible to other complex measurement tasks like
detecting censorship devices and other middlebox hardware,
as outlined above.

2

https://stat.ripe.net/m/widget/atlas-ping-measurements#w.mode=condensed&w.measurement_id=2006&w.probe_id=1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=2023-05-07T00%3A00%3A00&w.resolution=1h
https://stat.ripe.net/m/widget/atlas-ping-measurements#w.mode=condensed&w.measurement_id=2006&w.probe_id=1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=2023-05-07T00%3A00%3A00&w.resolution=1h
https://stat.ripe.net/m/widget/atlas-ping-measurements#w.mode=condensed&w.measurement_id=2006&w.probe_id=1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=2023-05-07T00%3A00%3A00&w.resolution=1h
https://stat.ripe.net/m/widget/atlas-ping-measurements#w.mode=condensed&w.measurement_id=2006&w.probe_id=1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=2023-05-07T00%3A00%3A00&w.resolution=1h

3 Design

Motivated by prior work on network measurement, in this
section we continue to describe our system architecture. We
start by providing a general overview of our framework, and
proceed to discuss the design of our measurement definition
interface. Influenced by this design, we further describe our
software and hardware architecture, as well as our data aggre-
gation strategy.

3.1 System Architecture
Our system employs a central controller. This controller is
responsible for implementing the majority of the system’s
logic, and coordinates attached probe devices accordingly.
To conduct a measurement, the central controller constructs
packets and sends them to probe devices, to be injected into
the network on the probe’s network interface. Depending on
the measurement definition, probes further record any incom-
ing traffic, relaying received packets back to the controller.
Time-sensitive measurements can utilize timestamps gathered
by probe devices for sent and received packets, respectively.
This inherently captures all end-host visible network behav-
ior. For example if a packet header field is modified on the
path between two probe devices, we can conclude that it must
have been modified by an active network element. Similarly,
blocked or throttled network flows can be identified. On a
larger scale, individual measurements can be combined to
learn attributes of more complex behavior, such as firewall
policies.

These measurements can be carried out by the central con-
troller in an automated fashion. The data gathered through
measurements is aggregated into appropriate data structures
at the controller, and can further be used for purposes such as
network visualization, alerting, or even vulnerability detection.
Figure 3 illustrates the controller software architecture.

3.2 Measurement Definition Interface
A key component of this system is the ability to define ar-
bitrary custom measurements, which capture data about the
network behavior between multiple probe devices, or between
a probe and an arbitrary remote host. Our centralized server
design is further motivated by the ability to easily define cus-
tom measurement types. These measurements can coordinate
the behavior of multiple physically distributed probe devices
from a logically centralized point. Our system integrates an
intuitive and powerful interface for network administrators
to define such measurements, which we describe throughout
this section.

On a fundamental level, end-host behavior in Ethernet/IP-
networks can be reduced to two actions: transmitting and
receiving a packet. All high-level network abstractions are
composed out of a combination of these actions, such as re-

def ping(probe_a, probe_b):
probe_b_ip = await probe_b.primary_ip()

Send an ICMP echo-request from probe A to B
answered, unanswered = await probe_a.sr(

Scapy packet manipulation DSL
IP(dst=probe_b_ip)
/ ICMP(type="echo-request"))

if len(ans) > 0:
We received a response, return the RTT:
return (

answered[0].answer.time
- answered[0].query.time

)
else:

We did not receive a response in time:
return None

Listing 1: An implementation of an ICMP-based ping mea-
surement between two probe devices. The sr method sends
packets and receives related packets of the same network flow.

acting to received packets with corresponding responses, or
combining multiple packets into network flows. To enable
active probing through network packets and observing any
resulting behavior, it is thus sufficient to provide an interface
only for sending and receiving network packets.

While expressive, a simple interface to send and receive
raw network packets is not a particularly intuitive method
to interact with packet data, and to correlate related network
traffic. To more easily support measurements which rely on
correlating sent and received packets, we offer an interface to
send and receive packets which belong to the same network
flow. Finally, to enable the user to intuitively craft arbitrary
network packets, we use the Scapy Python library, which
implements an expressive domain-specific language (DSL) to
create, parse and manipulate network packets.

Listing 1 outlines the definition of a simple, ICMP-based
ping measurement. As part of a measurement definition (im-
plemented through a Python class), a developer is provided
with objects for all registered probe devices in the system. In
this case, individual measurements are carried out on pairs of
probe devices, probe_a and probe_b. Packets can be created
as defined through the Scapy-DSL: for instance, an IP-packet
with an accompanying ICMP payload can be synthesized by
instantiating the IP and ICMP Python classes, and combining
the objects through the slash operator. A probe-object can
be used to interact with physical probe devices; it supports
sending packets (send), sending and receiving packets of the
same network flow (sr), or sniffing incoming packets on the
probe’s network interface (sniff). For each method, the con-
troller abstracts all network communication and serialization
with the probe. This ensures that developers have logically
centralized control with the measurement definition, and can
coordinate sent and received packets even across multiple
probes deployed throughout their network.

3

https://gitlab.com/sscherfke/aiomas

	Introduction
	Related Work
	Dedicated Hardware-based Network Measurement Systems
	Software-based Network Measurement Systems
	Network Monitoring Applications

	Design
	System Architecture
	Measurement Definition Interface
	Probe Software Architecture
	Probe Hardware Architecture
	Data Aggregation

	Evaluation
	Expressiveness
	Princeton Campus Deployment
	Data Visualization

	Conclusion
	Appendix

