
A Modular Framework for End-Host Driven Network Measurements
COS561 Spring ’23 Course Project Report

Tanu Batra (tanu.batra@rutgers.edu)a, Jack Defay (jd6058@princeton.edu)b, Varun Rao
(varunrao@princeton.edu)b, and Leon Schuermann (lschuermann@princeton.edu)b

aRutgers University
bPrinceton University

Abstract

Today’s networks get more complex by the minute: increases
in bandwidth requirements, low-latency links, ubiquitous In-
ternet of Things deployments, and strengthened security re-
quirements demand extremely reliable, scalable and intelli-
gent networks. Unfortunately, many of these requirements
are interconnected. For instance, new features are usually
deployed using middleboxes, but those increase network com-
plexity and makes it harder to diagnose issues. Additional
hardware-assisted monitoring infrastructure on routers lowers
the resources available to packet processing. Making matters
worse is the fact that network operators such as Internet Ser-
vice Providers have only limited insights into the resulting
network behavior; they commonly rely on informal customer
feedback.

In an effort to combat these issues, this report presents our
work on developing a modular framework for end-host driven
network measurements. In particular, we present our design
for an expressive Domain Specific Language (DSL) to imple-
ment custom network measurements, alongside mechanisms
to aggregate captured information in a graph-based data struc-
ture. Furthermore, we demonstrate our implementation of
these concepts in an integrated hardware–software system.
We demonstrate the applicability of our framework through a
deployment on the Princeton University campus network.

1 Introduction

Today’s Internet Service Providers (ISPs) face a challenge
of improving their networks to handle an ever-increasing de-
mand for performant and flexible Internet connectivity. At
the same time, they also strive to provide a reliable service
to their customers. In particular, to ensure reliability of their
networks, ISPs often rely on informal customer feedback or
complaints to diagnose network issues, which may involve di-
rect interaction with customers or physically probing affected
network hardware. Conventional networking hardware such
as commodity routers and switches provides only limited in-

Figure 1: System Overview - 4 Ethernet Raspberry Pi, 1 Wifi
Raspberry Pi, 1 External Probe

sight into network behavior. This makes it difficult to identify
issues related to routing, packet reordering, packet filtering,
or middlebox behavior.

RIPE Atlas [10] is a global Internet-scale measurement
network comprised of active network probe devices. It helps
to increase network visibility and simplifies troubleshooting
of common pathological network behaviors. While effective
for diagnosing issues concerning routing, latency and censor-
ship on a global scale, such a solution lacks the granularity
and expressiveness required to cover integrated ISP-networks
themselves. Furthermore, conventional and readily available
diagnostic information such as raw link statistics and routing
table dumps do not give significant insights into the actual
network behavior.

To address these issues, we aim to build a measurement
platform based on active network probes, integrated into a
network as end-hosts. A centralized controller is used to coor-
dinate measurements by instructing probe behavior, and col-
lecting and analyzing results. We validate our system with a
Mininet-based network simulation environment, and through
a small-scale deployment on the Princeton University campus

1

data network.
Our work contributes to the space of network measurement

solutions by providing a flexible and fine-grained measure-
ment platform to network administrators, illustrated in Fig-
ure 1. This platform enables the user to define custom and
arbitrarily complex measurements through a simple Python-
based Domain-Specific Language (DSL). We hope that this
platform will enable ISPs to improve and adapt their networks
to cope with increasing demand while maintaining reliability.

2 Related Work

In this section, we contextualize our framework within the
body of related work. In particular, we describe existing sys-
tems in the area of active network probing, as well as network
monitoring.

2.1 Dedicated Hardware-based Network Mea-
surement Systems

Prior work has used probes to perform both small and large
scale network monitoring and measurements. One example is
CheesePi, which uses a Raspberry Pi-based distributed mea-
surement system for monitoring home internet connections
(e.g. bandwidth and loss rate) [8]. Another such framework,
the Archipelago Measurement Infrastructure, performs net-
work monitoring using 120 Raspberry Pi probes deployed
on major US broadband access provider networks. They esti-
mated the topology and dynamics of the network by measur-
ing the connectivity and congestion across network peerings
through active measurements [2].

RIPE Atlas [10] is a large scale network measurement
platform which is directly and most related to our work. It
performs active measurements using global network of 12800
probe devices deployed through volunteers. Although it pro-
vides an “unprecedented understanding of the state of the
Internet in real time”, there are several limitations associated
with its use. First, it is difficult to correlate results between
probes. Second, one cannot send arbitrary packet data. Third,
one cannot easily define new measurement types. Fourth,
and most importantly, it is hard to explicitly coordinate mea-
surements, such as by sending packets between two probes
directly. In contrast, our system is strictly more expressive
and thus enables a strict superset of measurements to be im-
plemented. Other comparable large scale platforms include
SamKnows, BISmark and Dasu [1].

1https://stat.ripe.net/m/widget/atlas-ping-measurements#
w.mode=condensed&w.measurement_id=2006&w.probe_id=
1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=
2023-05-07T00%3A00%3A00&w.resolution=1h

Figure 2: RIPE-Atlas can capture various types of network
misbehavior: in this example, an active probe device on a
commodity Internet uplink is unable to reach the IPv6-address
of m.root-servers.net (2001:dc3::35) due to a routing
error within the ISP’s network (highlighted in red), while
other hosts remained reachable over the same time span1.

2.2 Software-based Network Measurement
Systems

In contrast to the previously mentioned dedicated network
monitoring systems, projects such as Microsoft PingMesh [5],
Google Black Box Monitoring [4] and NetSight [6] integrate
active probing software into existing systems, to acquire met-
rics such as latency and packet loss.

2.3 Network Monitoring Applications

Network measurements can be used in a variety of ways;
identification of censorship devices and middleboxes are two
such applications.

Prior work [9] has identified censorship devices through
a novel traceroute method. On a much larger scale, [7] have
identified censorship activities that block DNS, HTTP, or
HTTPS requests within 122 countries through end-to-end
network measurement frameworks.

Detal et al. [3] extended a basic traceroute measurement
to detect middlebox interference. Specifically, they proposed
Tracebox as a tool that detects modifications by middleboxes
in network paths by sending IP packets with varying TTL val-
ues and analyzing the returned ICMP messages. Furthermore,
it can pinpoint the specific network hop where the interference
occurs using information provided in the ICMP message. So
far our work has focused on basic network measurements such
as ping and traceroute, and some more complicated measure-
ments like NAT middlebox detection. However, our frame-
work is extensible to other complex measurement tasks like
detecting censorship devices and other middlebox hardware,
as outlined above.

2

https://stat.ripe.net/m/widget/atlas-ping-measurements#w.mode=condensed&w.measurement_id=2006&w.probe_id=1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=2023-05-07T00%3A00%3A00&w.resolution=1h
https://stat.ripe.net/m/widget/atlas-ping-measurements#w.mode=condensed&w.measurement_id=2006&w.probe_id=1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=2023-05-07T00%3A00%3A00&w.resolution=1h
https://stat.ripe.net/m/widget/atlas-ping-measurements#w.mode=condensed&w.measurement_id=2006&w.probe_id=1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=2023-05-07T00%3A00%3A00&w.resolution=1h
https://stat.ripe.net/m/widget/atlas-ping-measurements#w.mode=condensed&w.measurement_id=2006&w.probe_id=1005701&w.starttime=2023-04-19T00%3A00%3A00&w.endtime=2023-05-07T00%3A00%3A00&w.resolution=1h

3 Design

Motivated by prior work on network measurement, in this
section we continue to describe our system architecture. We
start by providing a general overview of our framework, and
proceed to discuss the design of our measurement definition
interface. Influenced by this design, we further describe our
software and hardware architecture, as well as our data aggre-
gation strategy.

3.1 System Architecture
Our system employs a central controller. This controller is
responsible for implementing the majority of the system’s
logic, and coordinates attached probe devices accordingly.
To conduct a measurement, the central controller constructs
packets and sends them to probe devices, to be injected into
the network on the probe’s network interface. Depending on
the measurement definition, probes further record any incom-
ing traffic, relaying received packets back to the controller.
Time-sensitive measurements can utilize timestamps gathered
by probe devices for sent and received packets, respectively.
This inherently captures all end-host visible network behav-
ior. For example if a packet header field is modified on the
path between two probe devices, we can conclude that it must
have been modified by an active network element. Similarly,
blocked or throttled network flows can be identified. On a
larger scale, individual measurements can be combined to
learn attributes of more complex behavior, such as firewall
policies.

These measurements can be carried out by the central con-
troller in an automated fashion. The data gathered through
measurements is aggregated into appropriate data structures
at the controller, and can further be used for purposes such as
network visualization, alerting, or even vulnerability detection.
Figure 3 illustrates the controller software architecture.

3.2 Measurement Definition Interface
A key component of this system is the ability to define ar-
bitrary custom measurements, which capture data about the
network behavior between multiple probe devices, or between
a probe and an arbitrary remote host. Our centralized server
design is further motivated by the ability to easily define cus-
tom measurement types. These measurements can coordinate
the behavior of multiple physically distributed probe devices
from a logically centralized point. Our system integrates an
intuitive and powerful interface for network administrators
to define such measurements, which we describe throughout
this section.

On a fundamental level, end-host behavior in Ethernet/IP-
networks can be reduced to two actions: transmitting and
receiving a packet. All high-level network abstractions are
composed out of a combination of these actions, such as re-

def ping(probe_a, probe_b):
probe_b_ip = await probe_b.primary_ip()

Send an ICMP echo-request from probe A to B
answered, unanswered = await probe_a.sr(

Scapy packet manipulation DSL
IP(dst=probe_b_ip)
/ ICMP(type="echo-request"))

if len(ans) > 0:
We received a response, return the RTT:
return (

answered[0].answer.time
- answered[0].query.time

)
else:

We did not receive a response in time:
return None

Listing 1: An implementation of an ICMP-based ping mea-
surement between two probe devices. The sr method sends
packets and receives related packets of the same network flow.

acting to received packets with corresponding responses, or
combining multiple packets into network flows. To enable
active probing through network packets and observing any
resulting behavior, it is thus sufficient to provide an interface
only for sending and receiving network packets.

While expressive, a simple interface to send and receive
raw network packets is not a particularly intuitive method
to interact with packet data, and to correlate related network
traffic. To more easily support measurements which rely on
correlating sent and received packets, we offer an interface to
send and receive packets which belong to the same network
flow. Finally, to enable the user to intuitively craft arbitrary
network packets, we use the Scapy Python library, which
implements an expressive domain-specific language (DSL) to
create, parse and manipulate network packets.

Listing 1 outlines the definition of a simple, ICMP-based
ping measurement. As part of a measurement definition (im-
plemented through a Python class), a developer is provided
with objects for all registered probe devices in the system. In
this case, individual measurements are carried out on pairs of
probe devices, probe_a and probe_b. Packets can be created
as defined through the Scapy-DSL: for instance, an IP-packet
with an accompanying ICMP payload can be synthesized by
instantiating the IP and ICMP Python classes, and combining
the objects through the slash operator. A probe-object can
be used to interact with physical probe devices; it supports
sending packets (send), sending and receiving packets of the
same network flow (sr), or sniffing incoming packets on the
probe’s network interface (sniff). For each method, the con-
troller abstracts all network communication and serialization
with the probe. This ensures that developers have logically
centralized control with the measurement definition, and can
coordinate sent and received packets even across multiple
probes deployed throughout their network.

3

Figure 3: A diagram of our overall system architecture

3.3 Probe Software Architecture
The measurement definition interface motivates a simple soft-
ware architecture for the physical network-probe devices. By
avoiding the inclusion of measurement-specific functional-
ity within the probe software itself, our system can reuse a
single application deployed on every device. Generally, the
probe software does not need to be modified to support new
measurements.

We chose to implement our probe software in Python. To
facilitate communication with the central controller, we em-
ploy the aiomas2 asynchronous RPC-library. This library
supports invoking multiple RPCs simultaneously, which is
important to allow for a multi-tenant system with multiple
measurements being run in parallel. Furthermore, it allows
for invoking reverse RPCs: when probe devices are located
at arbitrary points in a network, possibly behind Firewall-
or NAT-devices, it may not be feasible for the controller to
establish a connection to these devices directly. Instead, in
our system, probe devices initiate TCP-connections to the
controller, which are in turn used by the controller to perform
RPC invocations on the probe devices.

A probe device offers the following methods to the central
controller: send_l2 and send_l3 to transmit Ethernet- or
IP-packets respectively, sr_l2 and sr_l3 to send and receive
packets of the same flow, and sniff to collect incoming pack-
ets on a probe’s physical network interface. A probe device
also offers methods to interact with the device itself, such as
accessing its routing table, or executing arbitrary commands.
This allows the controller to launch more specialized soft-
ware for measurements where serializing and transporting all
packets towards the controller would be infeasible, such as
iperf3 for conducting bandwidth measurements.

2https://gitlab.com/sscherfke/aiomas

3.4 Probe Hardware Architecture

Figure 4: The prototype hardware watchdog

Our design prioritizes fully featured yet accessible hard-
ware, with long term deployability in mind. We use Raspberry
Pi 4B devices for our probes. These devices are very accessi-
ble compared to more specialized networking hardware, but
are still a relevant benchmark with gigabit Ethernet. Addi-
tionally, since our code is all written in python, the probe
software could easily be extended to other devices, making
this solution generalizable. We then add two features to the
Pi’s to make them more robust to deployment. Rather than
use an SD card which can fail, we net-boot the probes from
an image they pull from the central controller. This incurs a
larger startup cost, but eliminates a potential failure mode. We
also add a hardware watchdog timer using an Attiny85, which
is a low cost, Arduino compatible micro-controller. Combined
with the net-booting feature, this allows a probe to automati-
cally fully recover from a failure event. Weather it is caused

4

https://gitlab.com/sscherfke/aiomas

by bad code or a power surge, the hardware watchdog and
net-boot allows any probe to return to a working state within
minutes. This is especially important with devices deployed
all across a network, so if something goes wrong they can
be reset remotely rather than having to access each of them
manually.

3.5 Data Aggregation

In network monitoring, it is often necessary to collect data
from multiple sources, such as network probes or routers,
and aggregate that data to gain a comprehensive view of
network behavior. Aggregation allows us to identify patterns
and trends, detect anomalies and performance issues, and
make informed decisions about network management and
optimization. Without aggregation, we would be limited to
viewing each data source in isolation, which could lead to
incomplete or inaccurate insights.

The code in Listing 2 represents a Network Graph that is
constructed by gathering measurements from multiple probes.
The graph contains information about IP addresses, neigh-
bors, unreachable hops, and NAT state. The ensure_node
method creates a node in the graph given an IP and/or host-
name. The process_traceroute_measurement method ag-
gregates multiple traceroute measurements and builds a
graph of the network topology. This method adds neighbors
and unreachable hops to the graph based on the traceroute
measurements. The traverse_node, add_neighbor, and
add_unreachable_hop methods are helper methods used
by process_traceroute_measurement to add nodes and
edges to the graph.

4 Evaluation

We begin this section with an expressiveness evaluation, fol-
lowed by a discussion of the deployment of our framework
on the Princeton campus data network.

4.1 Expressiveness

In this section, we demonstrate the expressiveness of our sys-
tem by illustrating how it can used to implement a number of
integrated network measurements. The illustrated measure-
ment types make use of various system aspects, such as the
system’s flexible measurement definition interface, the ability
to coordinate measurements between probe devices, as well
as the powerful mechanism of executing arbitrary high-level
applications directly on the probe devices.

Listing 3 outlines the complete code for the definition of
an iterative ICMP-based traceroute implementation, between
all pairs of probes registered with the system. It manages to
express advanced features, such as a parallel execution of all
measurements on all probes through the use of asynchronous

APIs. Furthermore, it avoids issuing excessive spurious net-
work packets which probe for TTLs larger than the hop-count
up to the final destination, by performing step-wise increases
of the sent-packets’ TTL values (in this case, increasing by
5 hops each iteration). As apparent from this code excerpt,
our framework is able to concisely express measurements of
significant complexity.

To demonstrate the ability to coordinate measurements be-
tween multiple probe devices, we devise a simple scheme to
detect the presence of Network Address Translation (NAT)
devices between two probe devices. As shown in Listing 4,
this measurement utilizes the fact that a packet can be ex-
changed between two probes, where one probe transmits the
packet and another records incoming network traffic. Holding
a copy of both the sent and received packets, the software can
determine whether a NAT was present on this end-to-end path;
in this case, the source IP or the source port of the received
packet would have been changed.

Finally, we show the capabilities enabled by being able
to execute arbitrary commands on probe devices. Listing 5
shows a measurement which executes the avahi-browse
command on probe devices to discover announced services by
Multicast-DNS (mDNS) DNS Service Discovery (DNS-SD)
enabled devices. The controller can collect this information
from multiple probe devices, acting as network vantage points.
From this information, we can detect the present of mDNS
zoning in a network: for performance and isolation reasons,
networks may filter mDNS Multicast traffic even within a
single broadcast domain. By correlating information gathered
from multiple probe devices in a single broadcast domain but
multiple mDNS zones, we can deduce the presence of such
mechanisms.

4.2 Princeton Campus Deployment

We currently have 4 probes deployed on Princeton’s network.
One in Friend Center, one in EQuad, one in Sherrerd Hall,
and one in the Graduate College. Additionally, we have a
probe external to Princeton’s network in a datacenter located
in Virginia. The central controller is hosted on a server in the
Computer Science building’s datacenter. Each of these probes
is provisioned through a process called net-booting. We found
this to be a sufficient number of devices, as it allowed us to
perform measurements between 3 subnets on Princeton’s
campus, and investigate the mDNS zoning infrastructure on
the shared subnet between Friend Center and EQuad.

4.3 Data Visualization

We make use of the Jaal 3 framework for network visualiza-
tion. Jaal is a Python-based interactive network visualizing
tool built on top of two underlying data visualization frame-

3https://github.com/imohitmayank/jaal

5

https://github.com/imohitmayank/jaal

works, Dash4 and Visdcc5. Dash provides basic visualization
functionality through a web server. Visdcc on the other hand
provides additional visualization components, such as inter-
active maps, and advanced styling options, that can be used
to create dynamic and engaging visualizations.

Jaal provides a simple Python-based interface for network
visualization. The input is provided as 2 CSV files, one each
for the attributes of the nodes and edges, which form the
overall network. The node CSV file requires an id attribute,
which identifies the node. In our setting, the id is the IP
address of the network device. The edge CSV requires two
attributes, from, to, which defines the connections between
the nodes. Both from, to attributes must be a part of the
set of id’s defined in the nodes CSV. The node and edge
CSV files can define any number of additional numerical or
categorical attributes associated with a node or edge. The CSV
files need to be serialized into 2 distinct Pandas DataFrame
objects before being instantiated with the Jaal framework.

Jaal creates an interactive network visualization of the
nodes and edges, provided as an input. There are 4 features
exposed which allows the user to interact with the network:

Search : search for a node or an edge based on attributes
using Pandas syntax

Filter : only visualize select nodes and edges

Color: nodes and edges can be colored based on categorical
attributes

Size: nodes and edges can be sized based on numerical
attributes

We instantiate Jaal using the aggregated network measure-
ments described in Section 3.5. In addition to the required
attributes for the nodes and edges, we define the following
additional attributes to aid visualization:

nodes: nat (“unknown”, “likely”), probe (0,1)

edges: type (“direct”, “unreachable”)

We provide a sample visualization in Figure 5. The 6 large
yellow nodes represent our probe devices - 3 probes connected
to Ethernet, 1 probe connected to Ethernet and Wifi, 1 external
probe on the Hetzner server. The purple nodes indicate likely
NAT devices. The small yellow nodes represent intermediate
routers or end hosts.

5 Conclusion

In this project, we have developed and deployed a modular
framework to perform active network measurements through
the use of Raspberry Pi probes. Our current framework sup-
ports traceroute and ping as primitive measurements. Further,

4https://plotly.com/dash/
5https://github.com/jimmybow/visdcc

we demonstrate the ability to perform coordinated measure-
ments by composing multiple traceroute measurements for
the detection of NATs. By doing so, our work builds on and
contributes to literature which aims to provide granular and
flexible network measurements.

We envision future work and extensions of our work to
involve the following:

• Reverse engineer arbitrary network topologies by identi-
fication of further types of network devices.

• Make the aggregation strategy more flexible, expressive
and intelligent to reduce data redundancy.

• Real-time updating of network visualization and integra-
tion with our existing framework

• Automated fault detection. By running routine measure-
ments and comparing against baselines, a network ad-
ministrator could automatically detect bottlenecks or link
failures as it pertains to the user.

• Automated vulnerability testing. The system can be used
to automatically test the presence of firewalls, and verify
that security-relevant middleboxes work as intended.

References
[1] BAJPAI, V., ERAVUCHIRA, S. J., AND SCHÖNWÄLDER, J. Lessons

learned from using the ripe atlas platform for measurement research.
ACM SIGCOMM Computer Communication Review 45, 3 (2015), 35–
42.

[2] CLARK, D. D., BAUER, S., LEHR, W., CLAFFY, K., DHAMDHERE,
A. D., HUFFAKER, B., AND LUCKIE, M. Measurement and analysis
of internet interconnection and congestion. In 2014 TPRC Conference
Paper (2014).

[3] DETAL, G., HESMANS, B., BONAVENTURE, O., VANAUBEL, Y., AND
DONNET, B. Revealing middlebox interference with tracebox. In Pro-
ceedings of the 2013 conference on Internet measurement conference
(2013), pp. 1–8.

[4] GUILBAUD, N., AND CARTLIDGE, R. Google—localizing packet loss
in a large complex network. Feb 5 (2013), 1–43.

[5] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ,
D., LIU, Z., WANG, V., PANG, B., CHEN, H., ET AL. Pingmesh: A
large-scale system for data center network latency measurement and
analysis. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (2015), pp. 139–152.

[6] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES, D., AND
MCKEOWN, N. I know what your packet did last hop: Using packet
histories to troubleshoot networks. In 11th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 14) (2014),
pp. 71–85.

[7] JIN, L., HAO, S., WANG, H., AND COTTON, C. Understanding the
practices of global censorship through accurate, end-to-end measure-
ments. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 5, 3 (2021), 1–25.

[8] MCNAMARA, L., MARSH, I., AND FORSLIN, S. Cheesepi: A rasp-
berry pi based measurement platform. In IRTF & ISOC Workshop
on Research and Applications of Internet Measurements (RAIM 2015),
October 31, 2015, Yokohama, Japan (2015).

6

https://plotly.com/dash/
https://github.com/jimmybow/visdcc

[9] RAMAN, R. S., WANG, M., DALEK, J., MAYER, J., AND ENSAFI, R.
Network measurement methods for locating and examining censorship
devices. In Proceedings of the 18th International Conference on emerg-
ing Networking EXperiments and Technologies (2022), pp. 18–34.

[10] RIPE NCC STAFF. Ripe atlas: A global internet measurement network.
The Internet Protocol Journal 18, 3 (2015), 2–26.

7

A Appendix

class NetworkGraph:
graph = {}

create node given an IP and/or hostname
def ensure_node(self, ip, probe_hostname=None):

if ip not in self.graph:
self.graph[ip] = {

"ip": ip,
"probe_hostname": probe_hostname,
"neighbors": set(),
"unreachable_hops": set(),
"nat_state": 0,
"traversed": False,

}
else:

self.graph[ip]["probe_hostname"] =
probe_hostname

aggregation strategy of traceroute measurements
def process_traceroute_measurement(self, m):

Add src probe as first hop:
self.ensure_node(m.tracert_hops[0],

m.src_probe)

prev_hop = m.tracert_hops[0]
skipped_hops_count = 0
for ip in m.tracert_hops[1:]:

if ip is not None:
self.ensure_node(ip)
self.add_neighbor(prev_hop, ip,

skipped_hops_count)
self.traverse_node(ip)
prev_hop = ip
skipped_hops_count = 0

else:
skipped_hops_count += 1

self.ensure_node(m.dst_ip, m.dst_probe)
if m.dst_reached:

self.add_neighbor(prev_hop, m.dst_ip,
skipped_hops_count)

else:
self.add_unreachable_hop(prev_hop,

m.dst_ip)

def render_csv(self):
...

Listing 2: An implementation of an aggrega-
tion strategy for traceroute measurements. The
process_traceroute_measurement method aggre-
gates traceroute measurements. The ensure_node method
creates a node given an IP or hostname. The class may be
extended to support arbitrary number of measurements and
aggregation strategies.

async def traceroute(probe_a, probe_b):
if probe_b[0] is not None:

print(f"Traceroute {probe_a[0]} -> {probe_b[0]}...")
probe_b_ip = await probe_b[1].primary_ip()

else:
print(f"Traceroute {probe_a[0]} -> {probe_b[1]}...")
probe_b_ip = probe_b[1]

Perform an iterative traceroute to avoid flooding
the network:
max_ttl = 32
current_ttl = 1
ttl_step = 5
tracert_hops = [None for _ in range(0, max_ttl)]
dst_reached = False
while not dst_reached and current_ttl < max_ttl:

ttl_range = (current_ttl, current_ttl + ttl_step - 1)
ans, unans = await probe_a[1].sr(

IP(dst=probe_b_ip, ttl=ttl_range) / ICMP(),
as_thread=True, timeout=2, retry=3)

current_ttl += ttl_step

for qa in ans:
idx = qa.query[IP].ttl
src = qa.answer[IP].src
tracert_hops[0] = qa.query.src
if src == probe_b_ip:

tracert_hops = tracert_hops[:idx]
dst_reached = True
break

else:
tracert_hops[idx] = src

return TracerouteProbeMeasurementResult(
src_probe = probe_a[0],
max_ttl = max_ttl,
dst_ip = probe_b_ip,
dst_probe = probe_b[0],
tracert_hops = tracert_hops,
dst_reached = dst_reached,

)

Build all 2-permutations of probes currently registered
and make them traceroute towards each other:
measurement_perms = list(

itertools.permutations(self.probes.items(), 2))
measurement_jobs = [

traceroute(probe_a, probe_b)
for (idx, (probe_a, probe_b)) in enumerate(measurement_perms)

]

Await all measurements to execute them simultaneously:
results = await asyncio.gather(*measurement_jobs)

for r in results:
self.coordinator.ng.process_traceroute_measurement(r)

Listing 3: Implementation of an interative ICMP-based tracer-
oute between probe devices. This measurement makes use
of the asynchronous APIs to run measurements of individual
probes in parallel.

8

async def check_nat(probe_a, probe_b):
print(f"Check NAT {probe_a[0]} -> {probe_b[0]}...")
probe_b_ip = await probe_b[1].primary_ip()
probe_a_ip = await probe_a[1].lookup_ipv4_route(probe_b_ip)

Start a sniff task on probe B:
sniff_task = asyncio.create_task(

probe_b[1].sniff(filter="udp port 1337", timeout=5))

Send a packet from probe A to B to UDP port 1337 with
a known payload to identify this measurement:
await probe_a[1].send(

IP(src=probe_a_ip, dst=probe_b_ip)
/ UDP(sport=udp_port, dport=udp_port)

/ "netmonpi-nat-probe")

Wait for the sniff to end
sniffed = await sniff_task

for p in sniffed:
if UDP in p \

and p[UDP].dport == udp_port \
and isinstance(p[UDP].payload, Raw) \
and p[UDP].payload.load == b"netmonpi-nat-probe":
return NatMeasurementResult(

src_probe = probe_a[0],
src_ip_snd = probe_a_ip,
src_ip_rcv = p[IP].src,
dst_probe = probe_b[0],
dst_ip = probe_b_ip,
method = "udp",
udp_src_port_snd = udp_port,
udp_src_port_rcv = p[UDP].sport,
udp_dst_port = udp_port,
nat_detected = (

p[IP].src != probe_a_ip \
or p[UDP].sport != udp_port

)
)

Packet not received, no information
return None

Build all 2-permutations of probes currently registered
and check whether there is a Nat on the path in between:
measurement_perms = list(itertools.permutations(self.probes.items(), 2))
measurement_jobs = [

check_nat(probe_a, probe_b, method="udp")
for (idx, (probe_a, probe_b)) in enumerate(measurement_perms)

]

Await all measurements to execute them simultaneously:
results = await asyncio.gather(*measurement_jobs)

for r in results:
self.coordinator.ng.process_nat_measurement(r)

Listing 4: Implementation of a primitive Network Address
Translation (NAT) detection mechanism. This example illus-
trates how measurements can be carried out and coordinated
between probes connected to the system: first, a recipient
probe records incoming network traffic through the sniff
method. Then, the sending probe transmits a UDP packet with
known headers and payload. Finally, the received packet’s
header values are inspected. If either the source address or
port are changed, this likely indicates an on-path NAT device.

async def query_mdns(probe):
retcode, stdout, stderr = \

await probe[1]._c.remote.exec_command(
"avahi-browse -pt _adapi-http._tcp " \
+ "| cut -d';' -f4")

announced_services = list(map(
lambda record: record.strip().lower(),
stdout.strip().split("\n")

))

return MDNSZoningResult(
src_probe=probe[0],
src_ip=(await probe[1].primary_ip()),
dnssd_query="_adapi-http._tcp.local",
announced_services=announced_services,

)

measurement_jobs = [
query_mdns(probe)
for probe in self.probes.items()

]

for probe in self.probes.items():
res = await query_mdns(probe)
self.coordinator.graph.\

process_mdns_zoning_measurement(res)

Listing 5: Implementation of a measurement to capture sur-
rounding mDNS DNS-SD announced services offered by
other network devices. This measurement demonstrates the
capability of the controller to execute arbitrary applications on
the probe devices themselves. In practice, this measurement
is used to detect mDNS zoning in networks: for performance
and isolation reasons, Multicast mDNS traffic may be lim-
ited even within a single broadcast domain. Our system can
capture mDNS announcements from multiple vantage points,
and identify such isolation mechanisms by correlating data
from different probe devices.

9

Figure 5: Sample Network Visualization consisting of 6 probes (large yellow nodes), likely NAT devices (purple nodes),
intermediate nodes or end hosts (small yellow nodes)

10

	Introduction
	Related Work
	Dedicated Hardware-based Network Measurement Systems
	Software-based Network Measurement Systems
	Network Monitoring Applications

	Design
	System Architecture
	Measurement Definition Interface
	Probe Software Architecture
	Probe Hardware Architecture
	Data Aggregation

	Evaluation
	Expressiveness
	Princeton Campus Deployment
	Data Visualization

	Conclusion
	Appendix

